
Data Acquisition from tcpdump: Recovering and
Reconstituting Clickstream Data

Charlotte Young ASEE Summer Faculty, NRL August 1, 2012
Information Management and Decision Architectures

POCs: Myriam Abramson and Steve Russell
 Code 5584

Abstract—This paper investigates the feasibility of
extracting clickstream data from network traces.
Clickstream data capture the user Web browsing
behavior and require the user’s consent for the
acquisition of this data directly from the browser.
Extracting this data from network traces will provide
another source of data for research as well as enable
forensic Web analytics.

[1] INTRODUCTION

Myriam Abramson, NRL Code 5584, is the principal
investigator for the project, Behavioral Web Analytics.
The questions she seeks to answer include:

• Can we identify individuals from their web
browsing behavior given past browsing history?
Why or why not?

• Can we distinguish between two web browsing
histories as belonging to the same person or to
different persons?

The objective of the project is to develop the necessary
theoretical foundation and supporting algorithms for the
detection, tracking, and prediction of Web browsing
behavior leading to the identification of individuals of
interest. Motivations for studying Behavioral Web
Analytics include: the importance in cyberspace to link
a virtual identity to a real one; the option to use
behavioral web analytics to replace or complement
keystroke authentication of a user; the use of behavioral
web analytics to aid in online fraud detection; the fact
that information dominance and hybrid wars are of
significant interest to the Navy.
Three year overview of the Behavioral Web Analytics
project:

 Year 1. Data acquisition:
 a. WebTracker plugin with user study
 b. Clickstream data produced from generic tcpdump
file
 Year 2. Encoding and Genre Classification
 Year 3. Structured Prediction
The project is in the first year, data acquisition. This
paper is about the subproject, part b of year 1,
“Clickstream data produced from generic tcpdumpfile.”
Tcpdump files can be obtained at the network level
without having to install software plug-ins on the
individual user’s computer. This gives unlimited
potential for research data as long as the information
from the tcpdump file can be manipulated to look like
clickstream data from individual users. Several steps
have to occur before the tcpdump data is usable for this
research. This was task assigned to me. The rest of this
document summarizes what I did to accomplish this
goal.
The problems identified in the mining of Web usage
from network traces were as follows [1]:

(1) Path completion: pages are cached in the
browser and might not appear as a request on
the network.

(2) User identification: several users can be found
behind one IP address.

Heuristics exists to get around those problems. We have
identified in this project a third problem: disambiguation
between machine and human behaviour. As more
applications use Web services and the http protocol (e.g.
Dropbox and Ajax requests), this problem will get worse
in the future.

Recovering and Reconstituting Clickstream Data – Charlotte Young ASEE Summer Faculty Fellow NRL
August 2, 2012

[2] TECHNICAL APPROACH

Some basic assumptions were made initially to constrain
the scope of the project. The first was that the tcpdump
files would be processed into tcp sessions using an open
source program called ChaosReader. ChaosReader also
reassembles the sessions into their individual application
level files. As part of ChaosReader’s process, it creates
an index.html file that is a table of the processes
sessions with links to the reassembled files. An
additional assumption was made that header parsing
would take a rule based approach for determining the
component parts necessary to create a clickstream
record.

The figure above shows the processes the data must go
through to accomplish our goal of producing
clickstream data from a tcpdump file. First, a tcpdump
file is obtained from a network administrator. This very
large file contains packet data for all network traffic
during the session. Next, this tcpdump file is used as

input for a freeware program called ChaosReader. This
program puts the packets “back together” and produces
multiple files from the information in the tcpdump files.
All the files created by Chaosreader are used as input by
the program written by the author,
create clickstream.py. This Python program finds the
data needed to reconstrruct single-user clickstream data.
The challenges for this project include:

• Understanding all the Chaosreader files and
where the desired info would come from.

• Write a program to process the data in the files
and put it in clickstream form.

• Determine how to differentiate between human
actions and machine generated actions (e.g.
applications that would poll an html server
such as inbox polling in a web based email
program) in the data and then develop code to
filter out the machine generated actions.

Page 2

Recovering and Reconstituting Clickstream Data – Charlotte Young ASEE Summer Faculty Fellow NRL
August 2, 2012

Page 3

Recovering and Reconstituting Clickstream Data – Charlotte Young ASEE Summer Faculty Fellow NRL
August 2, 2012

Each entry from the Chaosreader index file that makes it
into the output file will have 4 important clickstream
components. The components in the output file are
separated by commas. First, the row number from
index.html is given. This was deemed valuable for cross
checking purposes during the analysis of the data. Next,
the 4 clickstream components are given in this order:

Subject
id

Time URL
visited

Browser
agent

Use first
IP addr,
no :port

In ordinal
format
(ms)

URL
address
built from
session file
using
HOST and
GET or
POST
values. If
session file
not
available,
use second
IP addr,
no :port,
do DNS
lookup if
requested

Pulled from
session file

Command used to produce the tcpdump file that
chaosreader then uses as input:

tcpdump -s 65535 -w out1

The decision was made to print the URL for the page
visited in the reconstituted clickstream instead of its IP
address that is given in the index.html file. If there is a
session file for the entry, this URL can be built from
finding the HOST field and concatenating the rest of
the address from the GET or POST field. If there is no
session file the entry is https. If requested by the user
when the program is started, a lookup will be made
using the IP address. The lookup for all https entries
does take several seconds (or minutes) when the
index.html file is large. If the lookup cannot be done,
the IP address is sent to output file. The program
imports “socket” module for this lookup, and then uses
the following code (IPs is a list of ip addresses):

 sock = socket.getfqdn(IPs[1]) #reverse
DNS lookup for fully qualified domain name

It was determined that the progam must handle IP
addresses in both v4 and v6. It was tricky to get the
regular expression right to match IPv4 and Ipv6. The
problem has to do with grouping options and how they
are handled in Python’s regular expressions and findall.
The solution was to use raw strings and change the
grouping I first thought I should use. The following
code works correctly and was thoroughly tested:

import re

expv4 =
r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3
}|"
expv6 = r"[0-9A-Fa-f]{1,4}:[0-9A-
Fa-f]{0,4}:[0-9A-Fa-f]{0,4}:[0-9A-
Fa-f]{0,4}:[0-9A-Fa-f]{0,4}:[0-9A-
Fa-f]{0,4}:[0-9A-Fa-f]{0,4}:[0-9A-
Fa-f]{1,4}"

regexp = expv4 + expv6

The pattern that the program searches for in
the index.html file is given by the user as a
regular expression. This pattern is used to
make the initial decision to pull rows from
index.html as potential clickstream entries.
Currently the code is written so that the
search is CASE SENSITIVE. However, code is
present that allows the search to be case
insensitive. This code is in main and
commented out but can be used instead if
desired.

Page 4

Recovering and Reconstituting Clickstream Data – Charlotte Young ASEE Summer Faculty Fellow NRL
August 2, 2012

During the analysis of the data, the following
observations were made that may be helpful in
analyzing human versus machine actions:

• Google and Wikipedia send page content in
compressed form (gz).

• Pages like google news have Javascripts that
constantly refresh the page without user action.

• AJAX requests generate a lot of network
traffic. For example, each character in a google
search generates a request and gets a response
so that the suggested list can be presented to
the user.

An explanation from Wikipedia explains about AJAX:
 AJAX (an acronym for Asynchronous
JavaScript and XML) is a group of interrelated
web development techniques used on the
client-side to create asynchronous web
applications. With Ajax, web applications can
send data to, and retrieve data from, a server
asynchronously (in the background) without
interfering with the display and behavior of the
existing page. Data can be retrieved using the
XMLHttpRequest object. Despite the name, the
use of XML is not required (JSON is often used
instead), and the requests do not need to be
asynchronous.

The http standard RFC (Request For Comment) was
very helpful in determining how to interpret data in the
session files, which come from http packet headers. The
document was used to understand GET, POST,
content_type, no_cache, XMLHttpRequest , etc. that
were important to the filter rubric. Web site for the RFC
editor: http://www.rfc-editor.org/rfc/rfc2616.txt

This document also contained statements that are
important to this project in general and should be
considered during the next phase.

14.36 Referer The Referer[sic]
request-header field allows the client
to specify,for the server's benefit,
the address (URI) of the resource from
which the Request-URI was obtained (the
"referrer", although the header field
is misspelled.) The Referer request-
header allows a server to generate
lists of back-links to resources for
interest, logging, optimized caching,
etc. It also allows obsolete or

mistyped links to be traced for
maintenance. The Referer field MUST NOT
be sent if the Request-URI was obtained
from a source that does not have its
own URI, such as input from the user
keyboard.

15.1.1 Abuse of Server Log Information
A server is in the position to save
personal data about a user's requests
which might identify their reading
patterns or subjects of interest. This
information is clearly confidential in
nature and its handling can be
constrained by law in certain
countries. People using the HTTP
protocol to provide data are
responsible for ensuring that such
material is not distributed without the
permission of any individuals that are
identifiable by the published results.

15.1.2 Transfer of Sensitive
Information Like any generic data
transfer protocol, HTTP cannot regulate
the content of the data that is
transferred, nor is there any a priori
method of determining the sensitivity
of any particular piece of information
within the context of any given
request. Therefore, applications SHOULD
supply as much control over this
information as possible to the provider
of that information. Four header fields
are worth special mention in this
context: Server, Via, Referer and From.
The Referer header allows reading
patterns to be studied and reverse
links drawn. Although it can be very
useful, its power can be abused if user
details are not separated from the
information contained in the Referer.
Even when the personal information has
been removed, the Referer header might
indicate a private document's URI whose
publication would be inappropriate.

Page 5

http://www.rfc-editor.org/rfc/rfc2616.txt

Recovering and Reconstituting Clickstream Data – Charlotte Young ASEE Summer Faculty Fellow NRL
August 2, 2012

The actual clickstream data from the browser plugin
represents only the activity of the user at his computer.
The data the Python program uses is the network traffic
generated by these actions, which will consist of many
more entries (rows) in the ChaosReader file. The
challenge is to differentiate between human action and
machine generated action, filtering out the machine-
generated actions and leaving only the human actions in
the reconstructed clickstream.

Deciding how to filter the matched entries from the
index.html file is a very important process in
reconstructing the clickstream data from the original
tcpdump logs. To filter out machine-generated entries it
was determined that each valid entry:

• must have User Agent if it is not https
• has its content type as text/html
• will not have the field “no-cache” anywhere in

the session file. (Filter out Pragma : no-cache
(this is same as “Cache-Control: no-cache” and
one might be present or the other.)

• will not have “0 bytes” if the pattern matches
• will not have “X-Requested-With:

XMLHttpRequest” which is what will be in the
header for an AJAX entry.

The list above determined the filter rubric that was
decided upon. This can be applied successfully for each
entry that is NOT https. When a user chooses to browse
a https site, Chaosreader can provide little information.
The time, userid, and site visited can be extracted, but
no information for the packet headers is given. The filter
rubric cannot be applied since there is no application file
to open. Currently, https entries are filtered simply if
there are contiguous multiple entries with the same time
and URL visited, only the first of the entries is sent to
the output file.
Current filter rubric:
<entries that match pattern> – (content-type !=
“text/html”) – “no-cache”– <no browser agent if !
https> –
 “X-Requested-With:
XMLHttpRequest”
Next pass:
<filtered entries that are https>: only include first
entry of contiguous set that have same user id, URL,
and time (within ±1 second).

To figure out how to reconstruct clickstream data,
several example data sets were used. Each data set
included all the files generated by Chaosreader from a
tcpdump of a user session. The data set also had an
actual clickstream file that was generated by a plug-in to
the FireFox browser used during the session. This actual
clickstream could be used to compare against the
reconstructed clickstream file generated by the Python
program. The table on the next page gives a summary of
the results using two example data sets, named in the
column headers.

Page 6

Recovering and Reconstituting Clickstream Data – Charlotte Young ASEE Summer Faculty Fellow NRL
August 2, 2012

[3] EVALUATION

 tcpdump_path_completion chaosreaderds 6-27

Total rows in ChaosReader index.html 1487 1030

Rows in clickstream (browser plugin) 58 25

Matches in the program, reg exp: “www|
http” unfiltered

444 141

Matches in the program, reg exp: “www|
http” filtered

131 54

 (non https / https) (61/70) (13/41)

After "contiguous https" filter 103 35

The bottom row represents the reconstructed clickstream
as produced by the python program. The goal is to have
these values less than or equal to the number of rows
from the actual clickstream produced by the browser
plug in.
Program components that were completed:

• Parse html files and handle as text.
• Convert time “Wed May 23 11:22:33 2012” to

milliseconds.
• Regular expression matching for determining

file names and for matching desired rows from
index.html.

• Handle both IPv4 and IPv6, with reverse
lookup if page name not available.

• Taking the matched rows and filter them using
rubric for determining user-generated actions.

• Create output file that looks like clickstream
data.

From this point, analysis must be completed between
the actual clickstream data and the program-generated
clickstream data. Comparisons must be made and the
filter rubric adjusted if needed. After that is complete,
the program can be updated to handle data from
multiple users. The path-completion problem can be
researched.
To further analyze the results, a program called _find
matches.py was written and debugged.
The purpose of this program is to analyze the filters
used to see if the entries thrown out should truly be
discarded. High level design for this program:
 for each entry in true clickstream:

 search the reconstituted clickstream for match
(using URL exact match and time window in
seconds)
 print the true clickstream entry, print the
match if found

Page 7

Recovering and Reconstituting Clickstream Data – Charlotte Young ASEE Summer Faculty Fellow NRL
August 2, 2012

For best analysis, this program should be executed with
3 reconstituted files:

only matches, no filters
filtered entries, no https filters
filtered entries AND https filters

Using the tcpcump_path_completion data set, the
number of matches found is the same for both the output
files clickstream_results URL.txt (filtered entries, no
https filters) and clickstream_results final.txt (filtered
entries AND https filters) . This means the https filter
did not take out any matches. However, next the
program should be run on completely non-filtered
entries to be sure that the filters did not throw out
important entries. The same process should be repeated
with the other data set. This analysis should go a long
way in determining how good the filters are.

[4]

Page 8

Recovering and Reconstituting Clickstream Data – Charlotte Young ASEE Summer Faculty Fellow NRL
August 2, 2012

[5] CONCLUSION

To summarize, it was difficult to make sense of the
output of ChaosReader for our purposes. Some of the
challenges included IPV6 handling, lack of handling of
SSL entries and adequate handling of payload data.
Another packet reassembler should be evaluated for this
portion of the technical approach. A clean
tcpdump/clickstream dataset should be generated by
first clearing the browser of its cache. This project only

identified the problem of distinguishing between
machine and human Web traffic but hasn’t solved it yet.
Future work will attempt to address with problem with a
learning approach based on http header features.

REFERENCES
[1] R. Cooley, B. Mobasher, and J. Srivastava, Data
preparation for mining world wide web browsing
patterns, Knowledge of Information Systems, 1999.

Page 9

	[1] Introduction
	[2] Technical Approach
	[3] Evaluation
	[5] Conclusion

